911

Michael Addition of Imines to Alkynylcarbene Complexes with Subsequent Intramolecular Cyclization – An Efficient Three-Step Synthesis of 2*H*-Pyrroles

Frank Funke^a, Michael Duetsch^a, Frank Stein^a, Matthias Noltemeyer^{1+1b}, and Armin de Meijere^{*a}

Institut für Organische Chemie der Universität Göttingen^a, Tammannstraße 2, D-37077 Göttingen, Germany

Institut für Anorganische Chemie der Universität Göttingen^b, Tammannstraße 4, D-37077 Göttingen, Germany

Received November 23, 1993

Key Words: Chromium, [2-(methyleneamino)ethenyl]carbene complexes / Michael addition of imines / (1-alkynylcarbene)chromium complexes / 2*H*-Pyrroles / Cyclization of {[2-(methyleneamino)ethenyl]carbene}chromium complexes

Imines 7, 11–13 were added to (1-alkynylcarbene)chromium complexes 6a–d to form {[2-(methyleneamino)ethenyl]carbene}chromium complexes 8a–d, 14a–d, 15a–d, 16a–d in good to very good yields (63–98%) except for two cases

Numerous investigations in recent years have uncovered manifold new reactions of Fischer carbene complexes^[1]. Phenyl- and ethenyl(alkoxy)carbene complexes have gained the widest interest of all, because of their six-membered ring annulation with alkynes (the so-called Dötz reaction)^[1,2]. A wide range of unsaturated carbenechromium complexes undergo this cycloaddition, but alkoxy{[2-(dialkylamino)ethenyl]carbene}chromium complexes yield a variety of different products. Depending on the substituents at the terminus of the ethenyl group they react with alkynes to give cyclopentadienes^[3], coordinated fulvenes^[4], 5-methylene-2-cyclopenten-1-ones^[5], or cyclopenta[b]pyrans^[6]. Moreover, alkoxy{[(2Z)-2-(dialkylamino)ethenyl]carbene}chromium complexes rearrange to aminomethylene complexes^[7], and monoalkylamino or amino derivatives rearrange to coordinated 1-aza-1,3-butadienes^[8].

As Aumann et al. have shown for several examples, carbene ligands of [amino(3-aza-1,3-butadienyl)carbene]chromium complexes 3, formed by insertion of alkynes, e.g. 1-(diethylamino)-1-propyne (2) into the chromium-carbon double bond of 1-(benzylideneamino) complexes 1 cyclize under the reaction conditions to the (initially coordinated) 2*H*-pyrrole 4, which can undergo a 1,5-hydride shift to give pyrrole 5, if $\mathbf{R} = \mathbf{H}$ (Scheme 1)^[9,10].

Although the Michael addition of dimethylamine to alkynylcarbene complexes was reported by Fischer et al. as early as 1972^[11], the broad scope of this reaction with a variety of heteroatomic nucleophiles has been tested only recently^[12,13]. However, the addition of imines to alkynylcar-

Chem. Ber. 1994, 127, 911-920

© VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994

0009-2940/94/0505-0911 \$ 10.00+.25/0

Scheme 1

(41-59%). The carbene ligands of the latter compounds cy-

clize to 2H-pyrroles 9a-d, 17a-d, 18a-d, 19a-d upon

heating in tetrahydrofuran solution to 50-55°C.

Scheme 2. (For detailed yields see Table 1)

bene complexes^[14], which would lead directly to complexes of type **3**, has not yet been tried.

When (alkynylcarbene)chromium complexes $6a-d^{[11b,12,15]}$ were treated with (diphenylmethylene)amine (7) in diethyl ether at 25°C, the Michael adducts 8a-d were formed

^[+] Crystal structure analysis.

smoothly. As could be shown by 2D-NOESY-NMR measurements, the Z isomers were obtained as the sole products except for the cyclopropyl derivative 8c, which gave a mixture of both isomers with a detectable amount of E isomer (ratio Z/E 94:6). The additions of 7 proceeded much slower than those of amines. With a threefold excess of 7 reactions were complete within one to two hours. Chromatography of the crude products afforded (Z)-8a-d in high yields (see Table 1).

Scheme 3

Table 1. Michael addition of (diphenylmethylene)amine (7) to (alkynylcarbene)chromium complexes 6a-d and subsequent cyclization to 2H-pyrroles 9a-d

Starting	R	Product	Yield	Z Isomer	2H-Pyrrole	Yield
material			(%)	(%) ^[a]		(%)
6a[11b]	Ph	8a	81	>96	9a	80
6b [15]	nPr	8b	78	>96	9b	88
6c[12a]	cPr	8c	98	94	9c	96
6d[12a]	<i>t</i> Bu	8d	98	>96	9d	99

^[a] Established on the basis of ¹H-NMR spectra.

When the alkoxy{(2Z)-2-[(diphenylmethylene)amino]ethenyl}carbene complexes 8a-d were heated to $50-55^{\circ}$ C in tetrahydrofuran solution cyclization of their carbene ligands occurred cleanly to yield 2*H*-pyrroles 9a-d within 15-18 h (see Table 1). The probable intermediate coordinated pyrroles like 4, which have been obtained and fully characterized with a crystal structure analysis by Aumann et al. from 1-(benzylideneamino) complexes $1^{[9a]}$, could not be isolated in any of the above cases after column chromatography.

When the Michael additions were carried out with **6b**, **d** and only one equivalent of **7** under high pressure (10 kbar)^[16], the adducts **8b**, **d** were not obtained in as high yields as above, but both the addition as well as the cyclization step were definitely accelerated. After 2 h under 10 kbar, unreacted starting materials **6b**, **d** (2, 3%), adducts **8b**, **d** (69, 71%), and 2*H*-pyrroles **9b**, **d** (15, 18%) were isolated.

Scheme 4

The formation of the 2*H*-pyrroles **9** could arise by a 6π electrocyclization of the 5-aza-1-chroma-1,3,5-hexatrienes **8** followed by reductive elimination of the pentacarbonylchromium unit from the 1-aza-5-chromacyclohexadiene **10**, as has been suggested before^[9a]. The electrocyclization of trienes **8** ought to be favored by their zwitterionic character; all carbon 1,3,5-hexatrienes undergo electrocyclization only at temperatures above 120°C. To probe for this mechanistic concept and to widen the scope of this sequence, it was carried out with substituents of different electronic nature in the methyleneamino group.

Scheme 5. (For detailed yields see Tables 2 and 3)

Table 2. Michael addition of imines 11-13 to (alkynylcarbene)chromium complexes 6a-d (Scheme 5)

Starting material	R1	Imine	R ²	R3	Product	Yield (%)	(Z) Isomer (%)[a]
6a ^[12b]	Ph	11	p-MeOC ₆ H ₄	p-MeOC ₆ H ₄	14a	41	>96
		12	Ph	cPr	15a	72	>96
		13	cPr	cPr	16a	85	>96
6b [15]	nPr	11	p-MeOC ₆ H ₄	p-MeOC ₆ H ₄	14b	63	>96
		12	Ph	cPr	15b	88	>96
		13	cPr	cPr	16b	81	>96
6c [12a]	сPг	11	p-MeOC ₆ H ₄	p-MeOC ₆ H ₄	14c	64	94
		12	Ph	cPr	15c	98	95
		13	cPr	cPr	16c	84	91
6d[12a]	<i>t</i> Bu	11	p-MeOC ₆ H ₄	p-MeOC ₆ H ₄	14d	59	>96
		12	Ph	cPr	15d	85	>96
		13	cPr	cPr	16d	86	>96

^[a] Established on the basis of ¹H-NMR spectra.

[Bis(*p*-methoxyphenyl)methylene]amine (11)^[17], (cyclopropylphenylmethylene)amine (12)^[18], and (dicyclopropylmethylene)amine (13)^[17] were added to (alkynylcarbene)chromium complexes 6a-d (Scheme 5 and Table 2). Surprisingly, the adducts 14a-d of 11 with 6a-d were obtained in poorer yield than all others, although the *p*-methoxy groups ought to increase the nucleophilicity of the nitrogen in 11. Again, a second isomer besides the Z form was not detected in any case except for the cyclopropyl derivatives 14c-16c, which each contained between 5 and 9% of the *E* isomer. It is noteworthy that even the addition of (cyclopropylphenylmethylene)amine (12) to 6a, b, d leads to only a single diastereomer (according to ¹H-NMR spectra). Yet the configuration around the N=C bond of this diastereomer remains unclear. The introduction of cyclopropyl groups as in 15 and 16 causes an increase in stability. The (dicyclopropylmethylene)amino derivatives 16a-d are stable for several weeks even at room temperature. In comparison with the phenyl group this might be attributed to the stronger electron-donating ability^[19] of the cyclopropyl group which would lead to a better compensation of the electron deficiency at the end of the conjugated system.

Table 3. 2*H*-Pyrroles 17a-d and 18a-d by cyclization of {[2-(methyleneamino)ethenyl]carbene}chromium complexes 14a-d and 15a-d

Starting material	R1	R ²	R ³	Product	Yield (%)
14a	Ph	<i>p</i> -MeOC _c H₄	p-MeOC ₆ H ₄	17a	25
14b	nPr	p-MeOC ₆ H ₄	p-MeOC ₆ H ₄	17b	57
14c	сPг	p-MeOC ₆ H ₄	p-MeOC ₆ H ₄	17c	65
14d	tBu	p-MeOC ₆ H ₄	p-MeOC ₆ H ₄	17d	78
15a	Ph	Ph	cPr	18a	62
15b	nPr	Ph	cPr	18b	88
15c	cPr	Ph	cPr	18c	97
15d	tBu	Ph	cPr	18d	85

Figure 1. Structure of 18d in the crystal^[20]

Cyclization by heating of the [bis(*p*-methoxyphenyl)methylene]amino derivatives 14a-d in tetrahydrofuran solution gave the 2*H*-pyrroles 17a-d only in moderate yield (Scheme 5 and Table 3). This indicates that the groups with stronger electron-donating ability disfavor the electrocyclization of an azachromatriene (Scheme 3). However, the (cyclopropylphenylmethylene)amino derivatives 15b-dwere cyclized to the 2*H*-pyrroles 18b-d in excellent yield.

Crystals suitable for X-ray diffraction were obtained for compound 18d. The structure analysis (Figure 1) revealed that the ring of 18d is planar (max. deviation ± 0.66 pm),

913

the lengths of the C(5)=N and C(3)=C(4) bonds are 129.4 and 133.7 pm, respectively.

Scheme 6

Table 4. Cyclization of $\langle \{(2Z)-2-[(dicyclopropylmethylene)-amino]ethenyl\}carbene>chromium complexes 16a-d$

Starting material	R	2H-Рупоle	Yield (%)	3(2H)- Pyridinone	Yield (%)
16a	Ph	19a	45	20a	21
16b	nPr	19Ь	63	20ь	22
16c	cPr	19c	81	20c	0
16d	tBu	19d	92	20d	0

Scheme 7

The (dicyclopropylmethylene)amino derivatives 16c, d ($\mathbf{R} = c\mathbf{Pr}$, tBu) yielded the 2*H*-pyrroles 19c, d in high yields of 81 and 92%, respectively, whereas 16a, b each gave a mixture of a 2*H*-pyrrole 19a, b and a new compound. The ¹H- and ¹³C-NMR, IR, and mass spectra disclosed these new compounds as the 3(2*H*)-pyridinones 20a, b (Scheme 6 and Table 4).

The formation of **20** may be rationalized as starting with a carbonyl insertion into the chromium-carbon bond in **16** to give a 3-azabutadienyl-ketene complex **21**, which subsequently cyclizes as in the third and fourth step of the Dötz reaction^[1,2]. Recently, there have been several reports on (2phenylethenyl)-, (1,3-butadienyl)-, or (biphenyl-2-yl)carbene complexes reacting with C=X (X = O, NR) to yield analogous six-membered ring dienones^[21]. However, it is not at all understood, why this reaction occurs only with these two examples, but this may be ascribed to the electronic peculiarity of the cyclopropyl groups^[19] and the bulkiness of the substituents **R** in **16c**, **d**. This type of cyclocarbonylation has been described before^[9c], and 3-hydroxypyridines were isolated as rearrangement products of (2H)pyridinone intermediates.

Eventually, by analogy with 5 the tungsten complex 23 was prepared by addition of (diphenylmethylene)amine (7) to the (alkynylcarbene)tungsten complex 22 in 92% yield. Cyclization of 23 proceeded cleanly and quantitatively to afford the 2*H*-pyrrole 9d, yet it took much longer (7 days) than that of the chromium counterpart, which took only 18 h.

This new three-step high-yield synthesis of 2H-pyrroles from easily prepared starting materials complements existing methods for the synthesis of 2H-pyrroles^[22].

This work was supported by the Volkswagen-Stiftung and the Fonds der Chemischen Industrie. Generous gifts of chemicals by the Hoechst AG and Hüls AG are gratefully acknowledged. M. D. is indebted to the Deutsche Forschungsgemeinschaft (Graduiertenkolleg "Kinetik und Selektivität chemischer Prozesse in verdichteter fluider Phase") for a graduate fellowship.

Experimental

All operations were performed under nitrogen. Solvents were dried by distillation from sodium or potassium/benzophenone. – ¹H NMR: Bruker AM 250 (250 MHz). – ¹³C NMR: Bruker AM 250 (62.9 MHz), multiplicities were determined by DEPT (Distortionless Enhancement by Polarization Transfer) measurements. Chemical shifts refer to $\delta_{TMS} = 0.00$ according to the chemical shifts of residual solvent signals. – IR: Bruker IFS 66, Perkin-Elmer 298. – MS: Varian MAT CH 7, MAT 731. – HRMS: Varian MAT 311 A. – Melting points: Büchi 510, uncorrected. – Elemental analysis: Mikroanalytisches Laboratorium des Instituts für Organische Chemie der Universität Göttingen.

Molecular composition and bulk purity were determined by microanalyses for representative examples of new compounds, for all others except for the methoxy-substituted compounds 14a-d molecular masses were confirmed by high-resolution mass spectrometry with preselected ion peak matching at $R \approx 10000$ to be within ± 2 ppm of the exact masses.

General Procedure for the Preparation of $\{[2-(Methylene$ $amino)ethenyl]carbene}chromium Complexes: The imine (15$ mmol) was added to a solution of 5 mmol of**6**in 50 ml of diethylether. The solution was stirred until no starting material could bedetected by TLC. The solvent was removed under reduced pressure,and the residue was purified by chromatography on 100 g of silica $gel (40 <math>\times$ 3 cm) to afford the pure complex.

Pentacarbonyl {(2Z)-3-[(diphenylmethylene)amino]-1-ethoxy-3phenyl-2-propenylidene}chromium (8a): To a solution of 1.00 g (2.86 mmol) of pentacarbonyl(1-ethoxy-3-phenyl-2-propynylidene)chromium (6a)^[11b] in 50 ml of diethyl ether was added 1.53 g (8.43 mmol) of (diphenylmethylene)amine (7) at 20°C. After 30 min purification (50 g of silica gel, 30 × 1.5 cm) yielded 1.22 g (81%) of 8a ($R_f = 0.21$, pentane), orange-red oil. – IR (film): $\tilde{v} = 2059$ cm⁻¹ (C=O), 1916 (C=O), 1639, 1508, 1475, 1261, 996, 665. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.30$ (t, ³J = 7.1 Hz, 3H, OCH₂CH₃), 4.89 (q, ³J = 7.1 Hz, 2H, OCH₂), 7.16 (s, 1H, 2-H), 7.29–7.55 (m, 15H, Ph). – ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 15.38$ (+, OCH₂CH₃), 76.02 (–, OCH₂), 122.72 (+, C-2), 127.83, 128.29, 128.44, 128.74, 130.40, 130.60 (+, Ph), 136.31, 137.70 (C_{quat}, Ph), 146.66 (C_{quat}, C-3), 164.66 (C_{quat}, C=N), 217.38, 224.36 (C_{quat}, C=O), 321.37 (C_{quat}, C-1). - MS (70 eV), m/z (%): 339 (2) [M⁺ - Cr(CO)₅], 261 (1), 208 (3), 152 (7), 105 (100), 74 (81), 60 (62), 46 (45).

Pentacarbonyl{(2Z)-3-[(diphenylmethylene)amino]-1-ethoxy-2hexenylidene}chromium (8b)

Variant A: To a solution of 141 mg (0.45 mmol) of pentacarbonyl(1-ethoxy-2-hexynylidene)chromium (6b)^[15] in 10 ml of diethyl ether was added 240 mg (1.32 mmol) of 7 at 20°C. After 1 h purification (20 g of silica gel, 16×1.5 cm) yielded 176 mg (78%) of **8b** ($R_{\rm f} = 0.37$, pentane), red oil. – IR (film): $\tilde{v} = 2965 \,{\rm cm}^{-1}$, 2052 (C=O), 1911 (C=O), 1645, 1517, 1240, 1137, 1030, 668. -¹H NMR (250 MHz, C₆D₆): $\delta = 0.67$ (t, ³J = 7.3 Hz, 3H, 6-H), 0.78 (t, ${}^{3}J = 7.1$ Hz, 3H, OCH₂CH₃), 1.33 (tq, ${}^{3}J = 7.3$, ${}^{3}J = 7.3$ Hz, 2 H, 5-H), 1.66 (t, ${}^{3}J = 7.3$ Hz, 2 H, 4-H), 4.60 (q, ${}^{3}J = 7.1$ Hz, 2H, OCH₂), 6.91 (s, 1H, 2-H), 7.03-7.12 (m, 6H, Ph), 7.23-7.36 (m, 4H, Ph). - ¹³C NMR (62.9 MHz, C₆D₆, plus DEPT): $\delta = 13.62$, 15.01 (+, OCH₂CH₃, C-6), 21.61 (-, C-5), 39.80 (-, C-4), 76.03 (-, OCH₂), 125.40 (+, C-2), 128.54, 128.83, 130.67 (+, Ph), 136.78 (C_{quat}, Ph), 151.75 (C_{quat}, C-3), 160.30 (C_{quat}, C=N), 218.32, 224.41 (C_{quat}, C=O), 317.94 (C_{quat}, C-1). -MS (70 eV), m/z (%): 497 (<1) [M⁺], 385 (6) [M⁺ - 4 CO], 357 (26) $[M^+ - 5 CO]$, 305 (41) $[M^+ - Cr(CO)_5]$, 276 (100), 248 (56), 165 (43).

Variant B: To a solution of 111 mg (0.35 mmol) of **6b**^[15] in 5 ml of diethyl ether was added 63 mg (0.35 mmol) of 7 at 20°C. After 2 h under high pressure (10 kbar) the solvent was removed under reduced pressure. Purification (12 g of silica gel, 11×1 cm, pentane/diethyl ether, 50:1) of the residue yielded fraction I: 2 mg (2%) of **6b** ($R_{\rm f} = 0.75$). – II: 121 mg (69%) of **8b** ($R_{\rm f} = 0.41$). – III: 16 mg (15%) of 3-Ethoxy-2,2-diphenyl-5-propyl-2*H*-pyrrole (9b) ($R_{\rm f} = 0.03$).

Pentacarbonyl{(2E/Z)-3-cyclopropyl-1-ethoxy-3-[(diphenylmethylene) amino]-2-propenylidene } chromium (8c): To a solution of 1.00 g (3.18 mmol) of pentacarbonyl(3-cyclopropyl-1-ethoxy-2-propynylidene)chromium (6c)^[12a] in 50 ml of diethyl ether was added 1.73 g (9.54 mmol) of 7 at 20°C. After 20 min purification (50 g of silica gel, 30×1.5 cm) yielded 1.54 g (98%) of 8c ($R_{\rm f} = 0.22$, pentane), orange-red oil. – IR (film): $\tilde{v} = 2049 \text{ cm}^{-1}$ (C=O), 1900 (C=O), 1631, 1482, 1238, 902, 665. - ¹H NMR (250 MHz, CDCl₃): $\delta = 0.71 - 0.90$ (m, 4H, cPr-CH₂), 1.12 (t, ³J = 7.1 Hz, 3H, OCH₂CH₃), 1.40–1.51 (m, 1H, *c*Pr-CH), 4.70 [q, ${}^{3}J = 7.1$ Hz, 2H, OCH₂, (Z)-8c], 4.90 [q, ${}^{3}J$ = 7.1 Hz, OCH₂, (E)-8c], 6.47 [s, 2-H, (E)-8c], 6.69 [s, 1H, 2-H, (Z)-8c], 7.32-7.53 (m, 10H, Ph). -¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): (*Z*)-8c: δ = 9.76 (-, cPr-CH₂), 15.22, 18.17 (+, OCH₂CH₃, cPr-CH), 75.48 (-, OCH₂), 122.49 (+, C-2), 128.33, 128.81, 130.72 (+, Ph), 136.15 (C_{quat}, Ph), 154.61 (C_{quat}, C-3), 162.58 (C_{quat}, C=N), 217.71, 224.14 (C_{quat}, C=O), 313.89 (C_{quat}, C-1). - \dot{MS} (70 eV), m/z (%): 495 (2) [\dot{M}^+], 439 (1) $[M^+ - 2 CO]$, 383 (22) $[M^+ - 4 CO]$, 355 (100) $[M^+ - 4 CO]$ 5 CO], 303 (25) $[M^+ - Cr(CO)_5]$, 274 (37), 105 (18), 77 (17). -C₂₆H₂₁CrNO₆: calcd. 495.0774 (correct HRMS).

Pentacarbonyl[(2Z)-3-[(diphenylmethylene)amino]-1-ethoxy-4,4-dimethyl-2-pentenylidene]chromium (8d)

Variant A: To a solution of 1.00 g (3.03 mmol) of pentacarbonyl(1-ethoxy-4,4-dimethyl-2-pentynylidene)chromium (**6d**)^[12a] in 50 ml of diethyl ether was added 1.65 mg (9.11 mmol) of 7 at 20°C. After 1 h purification (50 g of silica gel, 30 × 1.5 cm) yielded 1.52 g (98%) of **8d** ($R_f = 0.27$, pentane), red oil. – IR (film): $\tilde{v} = 2972$ cm⁻¹, 2050 (C=O), 1978 (C=O), 1920 (C=O), 1658, 1494, 1276, 694, 666, 644. – UV (pentane): λ_{max} (lg ε) = 249 nm (4.36), 457 (1.62). – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.03$ [s and t, ³J = 7.1 Hz, 12 H, C(CH₃)₃, OCH₂CH₃], 4.79 (q, ${}^{3}J$ = 7.1 Hz, 2 H, OCH₂), 6.91 (s, 1 H, 2-H), 7.36–7.61 (m, 10 H, Ph). – ${}^{13}C$ NMR (62.9 MHz, CDCl₃, plus DEPT): δ = 15.02 (+, OCH₂CH₃), 29.64 [+, C(CH₃)₃], 39.31 [C_{quat}, C(CH₃)₃], 75.61 (-, OCH₂), 121.94 (+, C-2), 128.37, 129.08, 130.69 (+, Ph), 136.76 (C_{quat}, Ph), 156.66 (C_{quat}, C-3), 158.35 (C_{quat}, C=N), 217.94, 224.31 (C_{quat}, C=O), 314.66 (C_{quat}, C-1). – MS (70 eV), *m*/*z* (%): 511 (<1) [M⁺], 371 (6) [M⁺ – 5 CO], 319 (67) [M⁺ – Cr(CO)₅], 304 (100), 290 (25), 219 (51), 107 (42), 80 (78), 52 (63) [Cr⁺]. – C₂₇H₂₅CrNO₆ (511.5): calcd. C 63.40, H 4.93, N 2.74; found C 63.62, H 5.05, N 2.73.

Variant B: To a solution of 106 mg (0.32 mmol) of $6d^{[12a]}$ in 5 ml of diethyl ether was added 58 mg (0.32 mmol) of 7 at 20°C. After 2 h under high pressure (10 kbar) the solvent was removed under reduced pressure. Purification (12 g of silica gel, 11 × 1 cm, pentane/diethyl ether, 50:1) of the residue yielded fraction I: 3 mg (3%) of 6d ($R_f = 0.72$). – II: 117 mg (71%) of 8d ($R_f = 0.43$). – III: 18 mg (18%) of 5-tert-Butyl-3-ethoxy-2,2-diphenyl-2H-pyrrole (9d) ($R_f = 0.02$).

 $\langle (2Z)$ -3- $\{ [Bis(4-methoxyphenyl) methylene] amino \}$ -1-ethoxy-3phenyl-2-propenylidene)pentacarbonylchromium (14a): To a solution of 190 mg (0.54 mmol) of **6a**^[11b] in 20 ml of diethyl ether was added 390 mg (1.62 mmol) of [bis(4-methoxyphenyl)methylene]amine (11) at 20°C. After 2 h purification (30 g of silica gel, 30×1.5 cm) yielded 131 mg (41%) of 14a ($R_f = 0.26$, pentane/diethyl ether, 15:1), red oil. – IR (film): $\tilde{v} = 2050 \text{ cm}^{-1}$ (C=O), 1924 (C=O), 1602, 1507, 1253, 1033, 665. $- {}^{1}$ H NMR (250 MHz, CDCl₃): $\delta =$ 1.28 (t, ${}^{3}J = 7.1$ Hz, 3H, OCH₂CH₃), 3.47 (s, 6H, OCH₃), 4.85 (q, ${}^{3}J = 7.1$ Hz, 2H, OCH₂), 6.81–6.92 (m, 4H, Ar), 7.21 (s, 1H, 2-H), 7.30-7.41 (m, 7H, Ar), 7.51-7.60 (m, 2H, Ar). - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 15.11 (+, OCH_2CH_3), 55.38$ (+, OCH₃), 75.90 (-, OCH₂), 113.64 (+, C-2), 122.62, 127.92, 128.71, 129.15 (+, Ar), 130.22 (Cquat, Ar), 130.49 (+, Ar), 137.84, 146.97 (C_{quat}, Ar), 161.48, 163.43 (C_{quat}, C-3, C=N), 217.57, 224.31 (Cquat, C=O), 319.45 (Cquat, C-1). - MS (70 eV), m/z (%): $479 (<1) [M^+ - 4 CO], 451 (4) [M^+ - 5 CO], 399 (18) [M^+$ $Cr(CO)_5$], 370 (20) [M⁺ - $Cr(CO)_5$ - C_2H_5], 355 (22), 220 (51), 80 (93), 52 (100) [Cr⁺].

((2Z)-3-{[Bis(4-methoxyphenyl)methylene]amino}-1-ethoxy-2hexenvlidene)pentacarbonylchromium (14b): To a solution of 695 mg (2.20 mmol) of **6b**^[15] in 50 ml of diethyl ether was added 1.59 g (6.60 mmol) of 11 at 20°C. After 2 h purification (40 g of silica gel, 30×1.5 cm) yielded 773 mg (63%) of **14b** ($R_{\rm f} = 0.37$, pentane/ diethyl ether, 50:1), red oil. – IR (film): $\tilde{v} = 2052 \text{ cm}^{-1}$ (C=O), 1930 (C=O), 1604, 1509, 1170, 908, 734, 668, - ¹H NMR (250 MHz, CDCl₃): $\delta = 0.89$ (t, ${}^{3}J = 7.2$ Hz, 3H, 6-H), 1.30 (t, ${}^{3}J =$ 7.1 Hz, 3H, OCH₂CH₃), 1.50 (tq, ${}^{3}J = 7.2$, ${}^{3}J = 7.2$ Hz, 2H, 5-H), 1.95 (t, ${}^{3}J = 7.2$ Hz, 2H, 4-H), 3.86 (s, 6H, OCH₃), 4.77 (q, ${}^{3}J = 7.1$ Hz, 2H, OCH₂), 6.72 (s, 1H, 2-H), 6.72-6.92 (m, 4H, C_6H_4), 7.26-7.41 (m, 4-H, C_6H_4). - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 13.73$, 15.19 (+, C-6, OCH₂CH₃), 21.45 (-, C-5), 39.84 (-, C-4), 55.35 (+, OCH₃), 75.52 (-, OCH₂), 113.68 (+, C-2), 125.33 (+, C₆H₄), 129.30 (C_{quat}, C₆H₄), 130.00 $(+, C_6H_4)$, 139.94 (C_{quat}, C₆H₄), 152.22, 161.42 (C_{quat}, C-3, C=N), 217.89, 224.17 (C_{quat}, C=O), 315.18 (C_{quat}, C-1). - MS (70 eV), m/z (%): 501 (<1) [M⁺ - 2 CO], 445 (3) [M⁺ - 4 CO], 261 (1), 208 (3), 152 (7), 105 (100), 74 (81), 60 (62), 46 (45).

 $\langle (2E|Z)-3- \{[Bis(4-methoxyphenyl)methylene]-amino\}-3$ cyclopropyl-1-ethoxy-2-propenylidene)pentacarbonylchromium (14c):To a solution of 431 mg (1.37 mmol) of**6c**^[12a] in 35 ml of diethylether was added 990 mg (4.10 mmol) of 11 at 20°C. After 3 hpurification (40 g of silica gel, 30 × 1.5 cm) yielded 487 mg (64%) $of 14c (<math>R_f = 0.26$, pentane/diethyl ether, 15:1), red oil. – IR (film): \hat{v} = 2253 cm⁻¹, 2051 (C=O), 1930 (C=O), 1603, 906, 734, 695. − ¹H NMR (250 MHz, CDCl₃): δ = 0.71−0.92 (m, 4H, cPr-CH₂), 1.11 (t, ³*J* = 7.1 Hz, 3H, OCH₂*CH*₃), 1.42−1.58 (m, 1H, cPr-CH), 3.86 (s, 6H, OCH₃), 4.68 [q, ³*J* = 7.1 Hz, 2H, OCH₂, (*Z*)-14c], 4.87 [q, ³*J* = 7.1 Hz, OCH₂, (*E*)-14c], 6.42 [s, 2-H, (*E*)-14c], 6.72 [s, 1H, 2-H, (*Z*)-14c], 6.39−6.99 (m, 4H, C₆H₄), 7.38−7.45 (m, 4H, C₆H₄). − ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): (*Z*)-14c: δ = 9.69 (−, *c*Pr-CH₂), 15.31 (+, OCH₂*C*H₃), 18.31 (+, *c*Pr-CH), 55.41 (+, OCH₃), 75.35 (−, OCH₂), 113.69 (+, C-2), 122.71 (+, C₆H₄), 128.98 (C_{quat}, C₆H₄), 130.83 (+, C₆H₄), 155.39, 161.34, 161.54 (C_{quat}, C₆H₄, C-3, C=N), 217.95, 224.18 (C_{quat}, C=O), 311.75 (C_{quat}, C-1). − MS (70 eV), *m/z* (%): 443 (8) [M⁺ − 4 CO], 415 (32) [M⁺ − 5 CO], 363 (58) [M⁺ − Cr(CO)₅], 334 (100) [M⁺ − Cr(CO)₅ − C₂H₅], 240 (10), 135 (7), 77 (3), 52 (6) [Cr⁺].

 $((2Z)-3-{[Bis(4-methoxyphenyl)methylene]amino}-1-ethoxy-$ 4,4-dimethyl-2-pentenylidene)pentacarbonylchromium (14d): To a solution of 445 mg (1.35 mmol) of 6d^[12a] in 30 ml of diethyl ether was added 970 mg (4.03 mmol) of 11 at 20°C. After 3 h purification (40 g of silica gel, 30×1.5 cm) yielded 455 mg (59%) of **14d** ($R_{\rm f}$ = 0.23, pentane/diethyl ether, 15:1), red oil. – IR (film): $\tilde{v} = 2976$ cm⁻¹, 2049 (C=O), 1923 (C=O), 1652, 1603, 1506, 1383, 698, 666. $^{-1}$ H NMR (250 MHz, CDCl₃): $\delta = 1.00 - 1.11$ [m, 12 H, C(CH₃)₃, OCH_2CH_3], 3.89 (s, 6H, OCH₃), 4.72 (q, ${}^3J = 7.1$ Hz, 2H, OCH₂), 6.88-6.99 (m, 5 H, 2-H, C₆H₄), 7.39-7.47 (m, 4 H, C₆H₄). - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 15.11 (+, OCH_2CH_3)$, 29.64 [+, C(CH₃)₃], 39.31 [C_{quat}, C(CH₃)₃], 55.33 (+, OCH₃), 75.40 (-, OCH₂), 113.69 (+, C-2), 121.63 (+, C₆H₄), 129.54 (C_{quat}, C_6H_4), 131.00 (+, C_6H_4), 156.80 (C_{quat} , C_6H_4), 157.34, 161.52 (Cquat, C-3, C=N), 218.18, 224.34 (Cquat, C=O), 311.55 (Cquat, C-1). - MS (70 eV), m/z (%): 571 (<1) [M⁺], 459 (1) [M⁺ - 4 CO], $379 (12) [M^+ - Cr(CO)_5], 281 (21), 207 (62), 108 (100), 86 (99), 52$ (99) [Cr⁺].

Pentacarbonyl{(2Z)-3-[(cyclopropylphenylmethylene)amino]-1ethoxy-3-phenyl-2-propenylidene}chromium (15a): To a solution of 304 mg (0.87 mmol) of **6a**^[11b] in 20 ml of diethyl ether was added 370 mg (2.55 mmol) of (cyclopropylphenylmethylene)amine (12) at 20°C. After 2 h purification (35 g of silica gel, 30×1.5 cm) yielded 311 mg (72%) of 15a ($R_i = 0.16$, pentane), red oil. – IR (film): $\tilde{v} = 2050 \text{ cm}^{-1}$ (C=O), 1918 (C=O), 1653, 1616, 1095, 667. - ¹H NMR (250 MHz, CDCl₃): $\delta = 1.02 - 1.05$ (m, 4H, cPr-CH₂), 1.43 $(t, {}^{3}J = 7.1 \text{ Hz}, 3 \text{ H}, \text{ OCH}_{2}CH_{3}), 1.98 (m_{c}, 1 \text{ H}, cPr-CH), 4.89 (q, 1)$ ${}^{3}J = 7.1$ Hz, 2H, OCH₂), 7.17 (s, 1H, 2-H), 7.33-7.40 (m, 6H, Ph), 7.52-7.57 (m, 4H, Ph). - ¹³C NMR (62.9 MHz, CDCl₃, plus cPr-CH), 76.02 (-, OCH₂), 121.43 (C-2), 126.39, 127.16, 127.77, 128.43, 128.64, 128.81 (+, Ph), 130.10, 130.47 (C_{quat}, Ph), 145.57 (C_{quat}, C-3), 166.78 (C_{quat}, C=N), 217.59, 224.36 (C_{quat}, C=O), 318.39 (C_{quat} , C-1). – MS (70 eV), m/z (%): 411 (13) [M⁺ – 3 CO], $383 (55) [M^+ - 4 CO], 355 (70) [M^+ - 5 CO], 303 (35) [M^+ - 5 CO], 303 (M^+ -$ Cr(CO)₅], 274 (45), 220 (25), 155 (20), 52 (100) [Cr⁺].

Pentacarbonyl{(2Z)-3-[(cyclopropylphenylmethylene)amino]-1ethoxy-2-hexenylidene}chromium (15b): To a solution of 408 (1.29 mmol) of **6b**^[15] in 20 ml of diethyl ether was added 560 mg (3.87 mmol) of **12** at 20°C. After 1.5 h purification (30 g of silica gel, 25 × 1.5 cm) yielded 524 mg (88%) of **15b** ($R_f = 0.12$, pentane), red oil. – IR (film): $\tilde{v} = 2051$ cm⁻¹ (C=O), 1973 (C=O), 1914 (C=O), 1669 (C=N), 1506, 1448, 1244, 1135, 668. – ¹H NMR (250 MHz, CDCl₃): $\delta = 0.88$ (t, ³J = 7.2 Hz, 3H, 6-H), 1.08 (m_c, 4H, cPr-CH₂), 1.37 (t, ³J = 7.1 Hz, 3H, OCH₂CH₃), 1.41–1.70 (m, 3H, 5-H, cPr-CH), 2.00 (t, ³J = 7.2 Hz, 2H, 4-H), 4.83 (q, ³J = 7.1 Hz, 2H, OCH₂), 6.62 (s, 1H, 2-H), 7.32–7.63 (m, 5H, Ph). – ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 9.49$ (–, cPr-CH₂),

Pentacarbonyl{(2E/Z)-3-cyclopropyl-3-[(cyclopropylphenylmethylene)amino]-1-ethoxy-2-propenylidene}chromium (15c): To a solution of 900 mg (2.86 mmol) of 6c^[12a] in 40 ml of diethyl ether was added 1.24 g (8.54 mmol) of 12 at 20°C. After 80 min purification (50 g of silica gel, 30×1.5 cm) yielded 1.29 g (98%) of 15c $(R_{\rm f} = 0.19, \text{ pentane}), \text{ red oil.} - \text{IR (KBr)}: \tilde{v} = 2052 \text{ cm}^{-1} \text{ (C=O)},$ 1967 (C=O), 1915 (C=O), 1895, 1681, 1450, 1340, 1248, 1037, 905, 662. – ¹H NMR (250 MHz, CDCl₃): $\delta = 0.61 - 0.72$ (m, 2H, cPr-CH₂), 0.80-0.95 (m, 2H, cPr-CH₂), 0.96-1.11 (m, 4H, cPr-CH₂), 1.31 (t, ${}^{3}J = 7.1$ Hz, 3H, OCH₂CH₃), 1.51 (m_c, 1H, cPr-CH), 1.98 (m_c, 1 H, *c*Pr-CH), 4.72 [q, ${}^{3}J$ = 7.1 Hz, 2 H, OCH₂, (*Z*)-15c], 4.91 $[q, {}^{3}J = 7.1 \text{ Hz}, \text{OCH}_{2}, (E)-15c], 6.49 [s, 2-H, (E)-15c], 6.71 [s, 1H,$ 2-H, (Z)-15c], 7.36-7.50 (m, 3H, Ph), 7.50-7.65 (m, 2H, Ph). -¹³C NMR (62.9 MHz, CDCl₃, plus DEPT); (Z)-15c; $\delta = 9.53, 9.95$ (-, cPr-CH₂), 15.30, 17.15, 17.89 (+, OCH₂CH₃, cPr-CH), 75.43 (-, OCH₂), 121.38 (+, C-2), 127.29, 128.50, 130.66 (+, Ph), 136.80 (C_{quat}, Ph), 154.36 (C_{quat}, C-3), 165.24 (C_{quat}, C=N), 217.94, 224.20 (C_{quat}, C=O), 310.12 (C_{quat}, C-1). - MS (70 eV), m/z (%): 459 (1) $[M^+]$, 431 (1) $[M^+ - CO]$, 403 (1) $[M^+ - 2 CO]$, 375 (3) [M⁺ - 3 CO], 347 (15) [M⁺ - 4 CO], 319 (25) [M⁺ - 5 CO], 267 (40) $[M^+ - Cr(CO)_5]$, 238 (100), 220 (25), 128 (30), 52 (58) $[Cr^+]$. C₂₃H₂₁CrNO₆ (459.4): calcd. C 60.13, H 4.61, N 3.05; found C 60.25, H 4.80, N 3.01; calcd. 459.0774 (correct HRMS).

 $Pentacarbonyl \{(2Z)-3-[(cyclopropylphenylmethylene)amino]-1$ ethoxy-4,4-dimethyl-2-pentenylidene {chromium (15d): To a solution of 1.00 g (3.03 mmol) of 6d^[12a] in 50 ml of diethyl ether was added 1.31 g (9.02 mmol) of 12 at 20°C. After 1 h purification (50 g of silica gel, 30×1.5 cm) yielded 1.22 g (85%) of 15d ($R_f = 0.15$, pentane), red oil. – IR (film): $\tilde{v} = 2050 \text{ cm}^{-1}$ (C=O), 1982 (C=O), 1927 (C=O), 1488, 1219, 1100, 1054. - ¹H NMR (250 MHz, $CDCl_3$ ^[20]: $\delta = 0.61 - 1.78$ [bs, 16H, C(CH₃)₃, OCH₂CH₃, cPr-CH₂], 1.80-2.09 (bs, 1H, cPr-CH), 4.55-4.90 (bs, 2H, OCH₂), 6.62-6.69 (bs, 1 H, 2-H), 7.15-7.79 (m, 5H, Ph). - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 8.63$, 10.38 (-, *c*Pr-CH₂), 15.36 (+, OCH₂CH₃), 17.33 (+, cPr-CH), 29.60 [+, C(CH₃)₃], 39.14 [C_{quat}, C(CH₃)₃], 75.54 (-, OCH₂), 118.66 (+, C-2), 127.53, 128.01, 130.66 (+, Ph), 137.81 (C_{quat}, Ph), 156.47 (C_{quat}, C-3), 160.67 (Cquat, C=N), 218.17, 224.37 (Cquat, C=O), 311.10 (Cquat, C-1). – MS (70 eV), m/z (%): 475 (8) [M⁺], 419 (3) [M⁺ – 2 CO], 363 (22) [M⁺ - 4 CO], 335 (100) [M⁺ - 5 CO], 283 (55) [M⁺ Cr(CO)₅], 268 (96), 254 (41), 198 (8), 97 (16), 57 (17).

Pentacarbonyl{(2Z)-3-[(dicyclopropylmethylene)amino]-1-ethoxy-3-phenyl-2-propenylidene}chromium (16a): To a solution of 350 mg (1.00 mmol) of $6a^{(11b)}$ in 20 ml of diethyl ether was added 2.00 g (18.3 mmol) of (dicyclopropylmethylene)amine (13) at 20°C. After 4 h purification (40 g of silica gel, 30 × 1.5 cm) yielded 388 mg (85%) of 16a ($R_{\rm f}$ = 0.16, pentane), red oil. – IR (KBr): \tilde{v} = 2963 cm⁻¹, 2053 (C=O), 1911 (C=O), 1260, 1094, 799, 659, 462. – ¹H NMR (250 MHz, CDCl₃): δ = 0.86–0.91 (m, 4H, cPr-CH₂), 1.03–1.06 (m, 4H, cPr-CH₂), 1.05–1.33 (m, 2H, cPr-CH), 1.59 (t, ³J = 7.1 Hz, 3H, OCH₂CH₃), 4.98 (q, ³J = 7.1 Hz, 2H, OCH₂), 7.32 (s, 1 H, 2-H), 7.38–7.42 (m, 3H, Ph), 7.54–7.57 (m, 2H, Ph). – ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): δ = 8.25 (–, cPr-CH₂), 13.59, 15.59 (+, OCH₂CH₃, cPr-CH), 76.23 (–, OCH₂), 122.65 (+, C-2), 126.39, 127.72, 128.32 (+, Ph), 146.40 (C_{quat}, Ph), 146.40 (C_{quat}, C-3), 172.79 (C_{quat}, C=N), 217.74, 224.36 (C_{quat}, C=O), 319.88 (C_{quat}, C-1). - MS (70 eV), m/z (%): 459 (3) [M⁺], 375 (2) [M⁺ - 3 CO], 267 (35) [M⁺ - Cr(CO)₅], 238 (100), 222 (36), 210 (37), 167 (31), 80 (35), 52 (32) [Cr⁺]. - C₂₃H₂₁CrNO₆: calcd. 459.0774 (correct HRMS).

Pentacarbonyl{(2Z)-3-[(dicyclopropylmethylene)amino]-1-ethoxy-2-hexenylidene {chromium (16b): To a solution of 760 mg (2.40 mmol) of **6b**^[15] in 20 ml of diethyl ether was added 2.00 g (18.3 mmol) of 13 at 20°C. After 3.5 h purification (30 g of silica gel, 25 \times 1.5 cm) yielded 827 mg (81%) of **16b** ($R_{\rm f} = 0.25$, pentane/diethyl ether 50:1), red oil. – IR (KBr): $\tilde{v} = 2959 \text{ cm}^{-1}$, 2925, 2875, 2052 (C=O), 1935 (C=O), 1457, 1380, 1033, 738, 481. - ¹H NMR (250 MHz, CDCl₃): $\delta = 0.72 - 1.10$ (m, 11 H, *c*Pr-CH₂, 6-H), 1.12-1.31 (m, 2H, 5-H, cPr-CH), 1.39-1.62 (m, 5H, 5-H, cPr-CH, OCH₂CH₃), 2.11 (t, ${}^{3}J$ = 7.2 Hz, 2H, 4-H), 4.89 (q, ${}^{3}J$ = 7.1 Hz, 2H, OCH₂), 6.68 (s, 1H, 2-H). - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 8.03, 8.43$ (-, *c*Pr-CH₂), 13.28, 13.86, 15.45 (+, C-6, OCH₂CH₃, cPr-CH), 21.11 (-, C-5), 40.60 (-, C-4), 75.66 $(-, \text{ OCH}_2)$, 123.69 (+, C-2), 152.54, 169.20 $(C_{quat}, \text{ C-3}, \text{ C=N})$, 217.89, 224.19 (C_{quat}, C=O), 319.01 (C_{quat}, C-1). – MS (70 eV), m/z (%): 425 (35) [M⁺], 369 (5) [M⁺ - 2 CO], 341 (12) [M⁺ - 3 CO], 313 (10) [M⁺ - 4 CO], 285 (55) [M⁺ - 5 CO], 269 (17), 241 (80), 213 (100), 121 (79), 73 (48), 52 (68) $[Cr^+]$. - $C_{20}H_{23}CrNO_6$ (425.4): calcd. C 56.47, H 5.45, N 3.29; found C 56.65, H 5.45, N 3.32.

Pentacarbonyl{(2E/Z)-3-cyclopropyl-3-[(dicyclopropylmeth*ylene amino]-1-ethoxy-2-propenylidene }chromium* (16c): To a solution of 120 mg (0.38 mmol) of 6c^[12a] in 15 ml of diethyl ether was added 1.50 g (13.8 mmol) of 13 at 20°C. After 2.5 h purification (25 g of silica gel, 20×1.5 cm) yielded 136 mg (84%) of 16c ($R_{\rm f}$ = 0.28, pentane), red oil. – IR (film): $\tilde{v} = 2960 \text{ cm}^{-1}$, 2926, 2052 (C=O), 1973 (C=O), 1933 (C=O), 1507, 901, 669. - ¹H NMR (250 MHz, CDCl₃): $\delta = 0.62 - 0.67$ (m, 2H, cPr-CH₂), 0.82-0.92 (m, 8H, cPr-CH), 1.21-1.27 (m, 2H, cPr-CH₂), 1.45-1.51 (m, 5H, OCH₂CH₃, cPr-CH₂), 1.98 (m_c, 1H, cPr-CH), 4.83 [q, ${}^{3}J$ = 7.1 Hz, 2 H, OCH₂, (Z)-16c], 4.96 [q, ${}^{3}J = 7.1$ Hz, 2 H, OCH₂, (E)-16c)], 6.70 [s, 1H, 2-H, (E)-16c], 6.87 [s, 1H, 2-H, (Z)-16c]. - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): (Z)-16c: $\delta = 8.34$, 8.69 (-, cPr-CH₂), 13.35, 15.49, 18.04 (+, OCH₂CH₃, cPr-CH), 75.39 (-, OCH₂), 123.37 (+, C-2), 155.98 (C_{quat}, C-3), 172.79 (C_{quat}, C=N), 218.03, 224.17 (C_{quat}, C=O), 312.81 (C_{quat}, C-1). - MS (70 eV), m/z (%): 423 (5) [\hat{M}^+], 367 (3) [$M^+ - 2 \hat{CO}$], 339 (1) [$M^+ - 3 \hat{CO}$], 231 (100) [M⁺ - Cr(CO)₅], 202 (91), 175 (55), 119 (38), 91 (45), 77 $(58). - C_{20}H_{21}CrNO_6$: calcd. 423.0774 (correct HRMS).

Pentacarbonyl {(2Z)-3-1 (dicyclopropylmethylene) amino]-1-ethoxy-4,4-dimethyl-2-pentenylidene}chromium (16d): To a solution of 620 mg (1.88 mmol) of 6d^[12a] in 20 ml of diethyl ether was added 2.50 g (22.9 mmol) of 13 at 20°C. After 4 h purification (40 g of silica gel, 30×1.5 cm) yielded 709 mg (86%) of 16d ($R_{\rm f} = 0.30$, pentane), orange crystals, m.p. 101°C. – IR (KBr): $\tilde{v} = 2048 \text{ cm}^{-1}$ (C=O), 1921 (C=O), 1392, 1363, 998, 743, 635, 527. - ¹H NMR $(250 \text{ MHz}, \text{CDCl}_3)$: $\delta = 0.81 - 0.93 \text{ (m, 6H, } c\text{Pr-CH}_2), 0.94 - 1.15$ (m, 2H, cPr-CH₂), 1.16 [s, 9H, C(CH₃)₃], 1.20-1.29 (m, 2H, cPr-CH), 1.23 (t ${}^{3}J = 7.1$ Hz, 3H, OCH₂CH₃), 4.87 (q, ${}^{3}J = 7.1$ Hz, 2H, OCH₂), 6.87 (s, 1H, 2-H). - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 7.02, 8.85 (-, cPr-CH_2), 13.21, 15.36, 17.33 (+, -)$ OCH₂CH₃, cPr-CH), 29.16 [+, C(CH₃)₃], 39.64 (C_{quat}, C(CH₃)₃], 75.99 (-, OCH₂), 129.12 (+, C-2), 158.76 (C_{quat}, C-3), 169.69 (C_{quat}, C=N), 217.86, 224.20 (C_{quat}, C=O), 317.75 (C_{quat}, C-1). -MS (70 eV), m/z (%): 439 (100) [M⁺], 317 (11), 255 (5), 183 (16), 141 (19), 105 (41), 77 (35), 55 (16). $-C_{21}H_{25}CrNO_6$ (439.4): calcd. C 57.40, H 5.73, N 3.19; found C 57.47, H 5.78, N 3.20.

Pentacarbonyl(1-ethoxy-4,4-dimethyl-2-pentynylidene) tungsten (22) was prepared according to the previously published method^[7] from 0.82 g (10.0 mmol) of 3,3-dimethyl-2-butyne and 3.52 g (10.0 mmol) of hexacarbonyltungsten, yield 4.46 g (97%) of 22 ($R_{\rm f}$ = 0.31, pentane), reddish black oil. – IR (film): \tilde{v} = 2970 cm⁻¹, 2166 (C=C), 2069 (C=O), 1945 (C=O), 1454, 1365, 1265, 1217, 1088, 645, 564. – ¹H NMR (250 MHz, CDCl₃): δ = 1.36 [s, 9H, C(CH₃)₃], 1.53 (t, ³J = 7.1 Hz, 3H, OCH₂CH₃), 4.60 (q, ³J = 7.1 Hz, 2H, OCH₂). – ¹³C NMR (62.9 MHz, CDCl₃): δ = 14.67 (OCH₂CH₃), 29.80 [C(CH₃)₃], 30.11 (C-4), 75.93 (OCH₂), 90.02 (C-3), 197.60, 250.80 (C=O), 290.41 (C-1), C-2 not observed. – MS (70 eV), *m*/z (%): 462 (52) [M⁺], 378 (75) [M⁺ – 3 CO], 350 (66) [M⁺ – 4 CO], 322 (100) [M⁺ – 5 CO], 263 (83), 41 (47). – C₁₄H₁₄O₆W (462.1): calcd. C 36.39, H 3.05; found C 37.17, H 3.08.

Pentacarbonyl{(2Z)-3-[(diphenylmethylene)amino]-1-ethoxy-4,4-dimethyl-2-pentenylidene } tungsten (23): To a solution of 711 mg (1.54 mmol) of 22 in 30 ml of diethyl ether was added 0.84 g (4.62 mmol) of 7 at 20°C. After 4 h purification (40 g of silica gel, $25 \times$ 1.5 cm) yielded 911 mg (92%) of 23 ($R_f = 0.41$, pentane), red oil. - IR (film): $\tilde{v} = 2972 \text{ cm}^{-1}$, 2059 (C=O), 1909 (C=O), 1498, 1221, 1058, 694, 597. – ¹H NMR (250 MHz, CDCl₃): $\delta = 0.99$ [s and t, ${}^{3}J = 7.1$ Hz, 12H, C(CH₃)₃, OCH₂CH₃], 4.55 (q, ${}^{3}J = 7.1$ Hz, 2H, OCH₂), 6.92 (s, 1 H, 2-H), 7.38-7.52 (m, 10 H, Ph). - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 14.81 (+, OCH_2CH_3), 29.48$ [+, C(CH₃)₃], 39.44 [C_{quat}, C(CH₃)₃], 78.31 (-, OCH₂), 121.56 (+, C-2), 128.38, 129.08, 130.75 (+, Ph), 136.66 (C_{quat}, Ph), 157.84 $(C_{quat}, C-3)$, 160.40 $(C_{quat}, C=N)$, 198.75, 204.09 $(C_{quat}, C=O)$, 290.27 (C_{quat}, C-1). – MS (70 eV), m/z (%): 643 (<1) [M⁺], 615 (1) $[M^+ - CO]$, 587 (6) $[M^+ - 2 CO]$, 559 (3) $[M^+ - 3 CO]$, 531 (2) $[M^+ - 4 CO]$, 319 (76) $[M^+ - W(CO)_5]$, 304 (100), 165 (25), 105 (10), 77 (12). $- C_{27}H_{25}NO_6W$ (643.4): calcd. C 50.41, H 3.92, N 2.18; found C 51.09, H 4.31, N 2.18; calcd. 643.1191 (correct HRMS).

3-Ethoxy-2,2,5-triphenyl-2H-pyrrole (9a): A solution of 430 mg (0.81 mmol) of 8a in 20 ml of tetrahydrofuran was stirred at 50-55°C for 15 h. The solvent was evaporated under reduced pressure. Impurities were removed by chromatography (15 g of silica gel, petroleum ether/diethyl ether, 10:1), elution with diethyl ether (plus 5% triethylamine) yielded 220 mg (80%) of 9a ($R_{\rm f}$ = 0.24), colorless crystals, m.p. 154°C. – IR (KBr): $\tilde{v} = 3080 \text{ cm}^{-1}$, 3056, 1960, 1618, 1578, 1058, 694. - ¹H NMR (250 MHz, CDCl₃): $\delta = 1.52$ (t, ${}^{3}J = 7.0$ Hz, 3 H, OCH₂CH₃), 4.22 (q, ${}^{3}J = 7.0$ Hz, 2H, OCH₂), 5.95 (s, 1H, 4-H), 7.29-7.59 (m, 13H, Ph), 8.05-8.13 (m, 2H, Ph). – ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): δ = 14.23 (+, OCH₂CH₃), 67.95 (-, OCH₂), 84.78 (C_{quat}, C-2), 95.01 (+, C-4), 127.13, 127.44, 127.93, 127.96, 128.38, 130.32 (+, Ph), 134.75, 141.36 (C_{quat}, Ph), 172.42, 184.38 (C_{quat}, C-5, -3). – MS (70 eV), m/z (%): 339 (100) [M⁺], 310 (96) [M⁺ - C₂H₅], 180 (82), 165 (22), 105 (25), 77 (43). $- C_{24}H_{21}NO$: calcd. 339.1623 (correct HRMS).

3-Ethoxy-2,2-diphenyl-5-propyl-2H-pyrrole (9b): A solution of 440 mg (0.89 mmol) of **8b** in 20 ml of tetrahydrofuran was stirred at 50-55°C for 16 h. The solvent was evaporated under reduced pressure. Impurities were removed by chromatography (15 g of silica gel, petroleum ether/diethyl ether, 10:1), elution with diethyl ether (plus 5% triethylamine) yielded 239 mg (88%) of 9b, brown oil. – IR (film): $\tilde{v} = 3078 \text{ cm}^{-1}$, 3050, 1619, 1573, 1052, 687. – ¹H NMR (250 MHz, CDCl₃): $\delta = 0.96$ (t, ³J = 7.0 Hz, 3H, CH₂CH₂CH₃), 1.36 (t, ³J = 7.0 Hz, 3H, OCH₂CH₃), 1.70 (tq, ³J = 7.0, ³J = 7.0 Hz, 2H, CH₂CH₂CH₃), 4.03 (q, ³J = 7.0 Hz, 2H, OCH₂), 5.31 (s, 1H, 4-H), 7.12-7.48 (m, 10H, Ph). – ¹³C NMR (62.9 MHz, CDCl₃, plus

Chem. Ber. 1994, 127, 911-920

DEPT): $\delta = 13.76$, 14.01 (+, CH₂CH₂CH₃, OCH₂CH₃), 20.46 (-, CH₂CH₂CH₃), 35.83 (-, CH₂CH₂CH₃), 67.61 (-, OCH₂), 83.63 (C_{quat}, C-2), 96.78 (+, C-4), 126.84, 127.22, 127.62 (+, Ph), 141.26 (C_{quat}, Ph), 176.62, 183.34 (C_{quat}, C-5, -3). - MS (70 eV), *m/z* (%): 305 (6) [M⁺], 276 (7) [M⁺ - C₂H₅], 179 (38), 105 (100), 77 (68), 59 (75). - C₂₁H₂₃NO: calcd. 305.1779 (correct HRMS).

5-Cyclopropyl-3-ethoxy-2,2-diphenyl-2H-pyrrole (9c): A solution of 468 mg (0.95 mmol) of 8c in 20 ml of tetrahydrofuran was stirred at 50-55°C for 16 h. The solvent was evaporated under reduced pressure. Impurities were removed by chromatography (12 g of silica gel, petroleum ether/diethyl ether, 10:1), elution with diethyl ether (plus 5% triethylamine) yielded 275 mg (96%) of 9c, light yellow oil. – IR (film): $\tilde{v} = 3058 \text{ cm}^{-1}$, 2976, 1620, 1543, 1110, 1043, 760, 699. – ¹H NMR (250 MHz, CDCl₃): $\delta = 0.82 - 1.01$ (m, 4H, cPr-CH₂), 1.36 (t, ${}^{3}J = 7.1$ Hz, 3H, OCH₂CH₃), 1.97 (m_c, 1 H, *c*Pr-CH), 3.98 (q, ${}^{3}J$ = 7.1 Hz, 2H, OCH₂), 5.02 (s, 1H, 4-H), 7.18-7.33 (m, 10H, Ph). - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 7.32$ (-, cPr-CH₂), 13.99, 14.29 (+, OCH₂CH₃, cPr-CH), 67.56 (-, OCH₂), 83.43 (C_{quat}, C-2), 93.74 (+, C-4), 126.81, 127.60, 127.70 (+, Ph), 141.37 (C_{quat} , Ph), 171.59, 183.29 (C_{quat} , C-5, -3). – MS (70 eV), m/z (%): 303 (22) [M⁺], 274 (41) [M⁺] C_2H_5], 177 (63), 126 (75), 105 (79), 98 (100), 77 (57), 69 (65). -C₂₁H₂₁NO: calcd. 303.1623 (correct HRMS).

5-tert-Butyl-3-ethoxy-2,2-diphenyl-2H-pyrrole (9d)

Variant A: A solution of 530 mg (1.04 mmol) of **8d** in 20 ml of tetrahydrofuran was stirred at 50–55°C for 18 h. The solvent was removed under reduced pressure. Purification by filtration (5 g of silica gel, diethyl ether) yielded 328 mg (99%) of **9d**, colorless oil. – IR (film): $\tilde{v} = 2985 \text{ cm}^{-1}$, 1699, 1616, 1068, 627, 645. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.23$ [s, 9H, C(CH₃)₃], 1.32 (t, ³*J* = 7.1 Hz, 3H, OCH₂CH₃), 4.00 (q, ³*J* = 7.1 Hz, 2H, OCH₂), 5.40 (s, 1H, 4-H), 7.12–7.41 (m, 10H, Ph). – ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 14.01$ (+, OCH₂CH₃), 28.12 [+, C(CH₃)₃], 35.52 [C_{quat}, C(CH₃)₃], 67.54 (–, OCH₂), 83.06 (C_{quat}, C-2), 94.73 (+, C-4), 126.87, 127.74, 127.77 (+, Ph), 141.29 (C_{quat}, Ph), 182.82, 183.35 (C_{quat}, C-5, -3). – MS (70 eV), *mlz* (%): 319 (57) [M⁺], 304 (62) [M⁺ – CH₃], 290 (20), 165 (5), 105 (100), 86 (57), 84 (73). – C₂₂H₂₅NO (319.5): calcd. C 82.72, H 7.89, N 4.38; found C 82.12, H 7.87, N 4.33; calcd. 319.1936 (correct HRMS).

Variant B: A solution of 924 mg (1.44 mmol) of 23 in 20 ml of tetrahydrofuran was stirred at $50-55^{\circ}$ C for 7 d. The solvent was removed under reduced pressure. Purification by filtration (5 g of silica gel) yielded 458 mg (99%) of 9d, colorless oil.

3-Ethoxy-2,2-bis(4-methoxyphenyl)-5-phenyl-2H-pyrrole (17a): A solution of 126 mg (0.21 mmol) of 14a in 10 ml of tetrahydrofuran was stirred at 50-55°C for 16 h. The solvent was evaporated under reduced pressure. Impurities were removed by chromatography (10 g of silica gel, petroleum ether/diethyl ether, 10:1), elution with diethyl ether (plus 5% triethylamine) yielded 21 mg (25%) of 17a, colorless oil. – IR (film): $\tilde{v} = 2977 \text{ cm}^{-1}$, 2805, 1444, 1122, 735. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.43$ (t, ³J = 7.1 Hz, 3H, OCH₂CH₃), 3.78 (s, 6H, OCH₃), 4.16 (q, ${}^{3}J$ = 7.1 Hz, 2H, OCH₂), 5.87 (s, 1 H, 4-H), 6.78-6.88 (m, 4 H, Ar), 7.31-7.39 (m, 4H, Ar), 7.40-7.51 (m, 3H, Ar), 8.00-8.11 (m, 2H, Ar). - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 14.22 (+, OCH_2CH_3)$, 55.42 (+, OCH₃), 68.30 (-, OCH₂), 83.36 (C_{quat}, C-2), 94.44 (+, C-4), 113.54, 127.94, 128.56, 129.02 (+, Ar), 131.05, 132.78, 158.96 (C_{quat}, Ar) , 171.81, 185.28 $(C_{quat}, C-5, -3)$. – MS (70 eV), m/z (%): 399 (1) $[M^+]$, 370 (4) $[M^+ - C_2H_5]$, 142 (9), 170 (10), 135 (25), 86 (85), 84 (100), 77 (33), 47 (42). $-C_{26}H_{25}NO_3$: calcd. 399.1834 (correct HRMS).

3-Ethoxy-2,2-bis(4-methoxyphenyl)-5-propyl-2H-pyrrole (17b): A solution of 485 mg (0.87 mmol) of 14b in 18 ml of tetrahydrofuran was stirred at 50-55°C for 16 h. The solvent was evaporated under reduced pressure. Impurities were removed by chromatography (20 g of silica gel, petroleum ether/diethyl ether, 8:1), elution with diethyl ether (plus 5% triethylamine) yielded 180 mg (57%) of 17b, light yellow oil. – IR (film): $\tilde{v} = 2962 \text{ cm}^{-1}$, 1625, 1607, 1508, 1176, 908, 734. – ¹H NMR (250 MHz, CDCl₃): $\delta = 0.98$ (t, ³J = 7.0 Hz, 3 H, $CH_2CH_2CH_3$), 1.39 (t, ${}^{3}J = 7.0$ Hz, 3 H, OCH_2CH_3), 1.70 (tq, ${}^{3}J = 7.0$, ${}^{3}J = 7.0$ Hz, 2H, CH₂CH₂CH₃), 2.51 (t, ${}^{3}J =$ 7.0 Hz, 2 H, $CH_2CH_2CH_3$), 3.77 (s, 6 H, OCH_3), 4.01 (q, ${}^{3}J = 7.0$ Hz, 2H, OCH₂), 5.28 (s, 1H, 4-H), 6.77-6.83 (m, 4H, C₆H₄), 7.22-7.30 (m, 4H, C₆H₄). - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 13.88, 14.17 (+, CH_2CH_2CH_3, OCH_2CH_3), 20.56 (-, -)$ CH₂CH₂CH₃), 35.98 (-, CH₂CH₂CH₃), 55.08 (+, OCH₃), 67.66 (-, OCH₂), 82.86 (C_{quat}, C-2), 96.47 (+, C-4), 113.24, 128.80 (+, C₆H₄), 133.76, 158.54 (C_{quat}, C₆H₄), 176.08, 183.98 (C_{quat}, C-5, -3). - MS (70 eV), m/z (%): 365 (15) [M⁺], 336 (18) [M⁺ - C₂H₅], 171 (38), 135 (23), 113 (40), 87 (100), 84 (98). - C₂₃H₂₇NO₃: calcd. 365.1990 (correct HRMS).

5-Cyclopropyl-3-ethoxy-2,2-bis(4-methoxyphenyl)-2H-pyrrole (17c): A solution of 269 mg (0.48 mmol) of 14c in 12 ml of tetrahydrofuran was stirred at 50-55°C for 18 h. The solvent was evaporated under reduced pressure. Impurities were removed by chromatography (15 g of silica gel, petroleum ether/diethyl ether, 10:1), elution with diethyl ether (plus 5% triethylamine) yielded 113 mg (65%) of 17c, brown oil. – IR (film): $\tilde{v} = 2837 \text{ cm}^{-1}$, 1622, 1605, 1508, 1249, 1110, 909, 732, 648. - ¹H NMR (250 MHz, $CDCl_3$ ^[23]: $\delta = 0.95 - 1.18$ (bs, 4H, *c*Pr-CH₂), 1.36 - 1.62 (bs, 3H, OCH₂CH₃), 2.00-2.16 (bs, 1H, cPr-CH), 3.80-4.01 (bs, 6H, OCH₃), 4.03-4.19 (bs, 2H, OCH₂), 5.12 (s, 1H, 4-H), 6.82-7.12 (bs, 4H, C₆H₄), 7.32-7.50 (bs, 4H, C₆H₄). - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 7.38$ (-, *c*Pr-CH₂), 14.14 (+, OCH₂CH₃), 14.35 (+, cPr-CH), 55.08 (+, OCH₃), 67.63 (-, OCH₂), 82.64 (C_{quat}, C-2), 93.48 (+, C-4), 113.23, 128.78 (+, C_6H_4), 133.79, 158.53 (C_{quat} , C_6H_4), 177.16, 183.93 (C_{quat} , C-5, -3). – MS (70 eV), m/z (%): 363 (42) [M⁺], 334 (100) [M⁺ – C₂H₅], 242 (20), 135 (45), 84 (22), 77 (18), 57 (22), 43 (15). $-C_{23}H_{25}NO_3$: calcd. 363.1834 (correct HRMS).

5-tert-Butyl-3-ethoxy-2,2-bis(4-methoxyphenyl)-2H-pyrrole (17d): A solution of 380 mg (0.66 mmol) of 14d in 16 ml of tetrahydrofuran was stirred at 50-55°C for 20 h. The solvent was evaporated under reduced pressure. Impurities were removed by chromatography (20 g of silica gel, petroleum ether/diethyl ether, 10:1), elution with diethyl ether (plus 5% triethylamine) yielded 197 mg (78%) of **17d**, yellow oil. – IR (film): $\tilde{v} = 2964 \text{ cm}^{-1}$, 2837, 1623, 1508, 1248, 908, 734. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.39$ [s, 9 H, $C(CH_3)_3$], 1.50 (t, ${}^{3}J = 7.1$ Hz, 3H, OCH_2CH_3), 3.92 (s, 6H, OCH_3), 4.15 (q, ${}^{3}J = 7.1$ Hz, 2H, OCH_2), 5.52 (s, 1H, 4-H), 6.90-6.99 (m, 4H, C₆H₄), 7.36-7.48 (m, 4H, C₆H₄). - ¹³C-NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 14.00 (+, OCH_2CH_3), 27.96$ [+, C(CH₃)₃], 35.29 [C_{quat}, C(CH₃)₃], 54.83 (+, OCH₃), 67.30 (-, OCH₂), 81.96 (C_{quat}, C-2), 94.06 (+, C-4), 112.97, 128.58 (+, $C_{6}H_{4}$), 133.44, 158.29 (C_{quat} , $C_{6}H_{4}$), 182.09, 183.63 (C_{quat} , C-5, -3). - MS (70 eV), m/z (%): 379 (100) [M⁺], 364 (87) [M⁺ - CH₃], $350 (35) [M^+ - C_2H_5], 240 (10), 135 (18), 48 (18). - C_{24}H_{29}NO_3$ calcd. 379.2147 (correct HRMS).

2-Cyclopropyl-3-ethoxy-2,5-diphenyl-2H-pyrrole (18a): A solution of 390 mg (0.78 mmol) of 15a in 16 ml of tetrahydrofuran was stirred at $50-55^{\circ}$ C for 20 h. The solvent was evaporated under reduced pressure. Impurities were removed by chromatography (12 g of silica gel, petroleum ether/diethyl ether, 10:1), elution with

diethyl ether (plus 5% triethylamine) yielded 147 mg (62%) of **18a**, white crystals, m.p. 88°C. – IR (KBr): $\tilde{v} = 2839 \text{ cm}^{-1}$, 1621, 1462, 1302, 830, 787. – ¹H NMR (250 MHz, CDCl₃): $\delta = 0.18 \text{ (m}_c, 1 \text{ H}, cPr-CH_2)$, 0.31 (m_c, 1H, cPr-CH₂), 0.54 (m_c, 1H, cPr-CH₂), 0.76 (m_c, 1H, cPr-CH₂), 1.30 (t, ³J = 7.0 Hz, 3H, OCH₂CH₃), 1.60 (m_c, 1H, cPr-CH), 4.02 (m_c, 2H, OCH₂), 5.65 (s, 1H, 4-H), 7.10–7.28 (m, 3H, Ph), 7.30–7.39 (m, 3H, Ph), 7.42–7.53 (m, 2H, Ph), 7.80–7.90 (m, 2H, Ph). – ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 0.27, 2.71 (cPr-CH₂), 14.23, 17.60 (+, OCH₂CH₃, cPr-CH), 67.66 (-, OCH₂), 79.54 (C_{quat}, C-2), 93.84 (+, C-4), 124.07, 126.84, 127.30, 128.12, 128.37, 130.19 (+, Ph), 134.85, 140.38 (C_{quat}, Ph), 172.67, 186.28 (C_{quat}, C-5, -3). – MS (70 eV),$ *m/z*(%): 303 (91) [M⁺], 274 (100) [M⁺ - C₂H₅], 246 (20), 144 (8), 102 (5), 77 (3). – C₂₁H₂₁NO: calcd. 303.1623 (correct HRMS).

2-Cyclopropyl-3-ethoxy-2-phenyl-5-propyl-2H-pyrrole (18b): A solution of 407 mg (0.88 mmol) of 15b in 18 ml of tetrahydrofuran was stirred at 50-55°C for 24 h. The solvent was evaporated under reduced pressure. Impurities were removed by chromatography (10 g of silica gel, petroleum ether/diethyl ether, 10:1), elution with diethyl ether (plus 5% triethylamine) yielded 210 mg (88%) of 18b, light brown oil. – IR (film): $\tilde{v} = 2962 \text{ cm}^{-1}$, 2932, 1623, 1048, 909, 733. – ¹H NMR (250 MHz, CDCl₃): $\delta = 0.18$ (m_c, 1 H, *c*Pr-CH₂), 0.31 (m_c, 1H, cPr-CH₂), 0.59 (m_c, 1H, cPr-CH₂), 0.71 (m_c, 1H, cPr-CH₂), 0.98 (t, ${}^{3}J$ = 7.0 Hz, 3 H, CH₂CH₂CH₃), 1.37 (t, ${}^{3}J$ = 7.0 Hz, 3H, OCH₂CH₃), 1.50 (m_c, 1H, cPr-CH), 1.66 (tq, ${}^{3}J$ = 7.0, ${}^{3}J = 7.0$ Hz, 2H, CH₂CH₂CH₃), 2.47 (t, ${}^{3}J = 7.0$ Hz, 2H, CH₂CH₂CH₃), 4.03 (m_c, 2H, OCH₂), 5.21 (s, 1H, 4-H), 7.16-7.38 (m, 3H, Ph), 7.50-7.61 (m, 2H, Ph). - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): δ = 0.14, 2.67 (-, *c*Pr-CH₂), 13.96, 14.17 (+, CH₂CH₂CH₃, OCH₂CH₃), 17.19 (+, cPr-CH), 20.76 (-, CH₂CH₂CH₃), 36.01 (-, CH₂CH₂CH₃), 67.46 (-, OCH₂), 78.61 (C_{quat}, C-2), 95.84 (+, C-4), 126.29, 126.71, 128.00 (+, Ph), 128.44 (C_{quat}, Ph), 177.88, 185.39 (C_{quat}, C-5, -3). – MS (70 eV), m/z (%): 269 (43) $[M^+]$, 240 (100) $[M^+ - C_2H_5]$, 200 (42), 105 (40), 77 (26), 55 (18), 41 (23). $-C_{18}H_{23}NO$: calcd. 269.1779 (correct HRMS).

2,5-Dicyclopropyl-3-ethoxy-2-phenyl-2H-pyrrole (18c): A solution of 400 mg (0.87 mmol) of 15c in 18 ml of tetrahydrofuran was stirred at 50-55°C for 16 h. The solvent was evaporated under reduced pressure. Impurities were removed by chromatography (16 g of silica gel, petroleum ether/diethyl ether, 10:1), elution with diethyl ether (plus 5% triethylamine) yielded 228 mg (97%) of 18c, colorless oil. – IR (film): $\tilde{v} = 2962 \text{ cm}^{-1}$, 1621, 1304, 1100, 697. - ¹H NMR (250 MHz, CDCl₃): $\delta = 0.18$ (m_c, 1 H, *c*Pr-CH₂), 0.32 (m_c, 1H, cPr-CH₂), 0.54 (m_c, 1H, cPr-CH₂), 0.73 (m_c, 1H, cPr-CH₂), 0.80–1.08 (m, 4H, cPr-CH₂), 1.31 (t, ${}^{3}J = 7.1$ Hz, 3H, OCH₂CH₃), 1.54 (m_c, 1H, cPr-CH), 1.82 (m_c, 1H, cPr-CH), 3.92 (m_c, 2H, OCH₂), 4.95 (s, 1H, 4-H), 7.16-7.35 (m, 3H, Ph), 7.50-7.58 (m, 2H, Ph). - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 0.06, 2.59, 7.38, 7.42 (-, cPr-CH_2), 14.06, 14.07, 17.10$ (+, OCH₂CH₃, cPr-CH), 67.33 (-, OCH₂), 78.26 (C_{quat}, C-2), 92.93 (+, C-4), 126.61, 126.80, 127.91 (+, Ph), 140.52 (C_{quat}, Ph), 178.85, 185.25 (C_{quat}, C-5, -3). – MS (70 eV), m/z (%): 267 (99) $[M^+]$, 238 (100) $[M^+ - C_2H_5]$, 222 (15), 164 (12), 109 (39), 77 (37), 41 (44). $- C_{18}H_{21}NO$: calcd. 267.1623 (correct HRMS).

5-tert-Butyl-2-cyclopropyl-3-ethoxy-2-phenyl-2H-pyrrole (18d): A solution of 321 mg (0.68 mmol) of 15d in 12 ml of tetrahydrofuran was stirred at 50-55°C for 18 h. The solvent was evaporated under reduced pressure. Impurities were removed by chromatography (10 g of silica gel, petroleum ether/diethyl ether, 8:1), elution with diethyl ether (plus 5% triethylamine) yielded 162 mg (85%) of 18d, white crystals, m.p. 29°C. – IR (film): $\tilde{v} = 3086 \text{ cm}^{-1}$, 2962, 2930, 1621, 1561, 1099. – ¹H NMR (250 MHz, CDCl₃): $\delta = 0.11 \text{ (m}_c$.

1 H, cPr-CH₂), 0.22 (m_c, 1 H, cPr-CH₂), 0.56 (m_c, 1 H, cPr-CH₂), 0.61 (m_c, 1 H, cPr-CH₂), 1.21 [s, 9 H, C(CH₃)₃], 1.30 (t, ${}^{3}J = 7.1$ Hz, 3 H, OCH₂CH₃), 1.60 (m_c, 1 H, cPr-CH), 3.92 (m_c, 2 H, OCH₂), 5.25 (s, 1 H, 4-H), 7.13–7.37 (m, 3 H, Ph), 7.40–7.53 (m, 2 H, Ph). – ${}^{13}C$ NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 0.06$, 2.34 (–, cPr-CH₂), 14.07, 16.78 (+, OCH₂CH₃, cPr-CH), 28.24 [+, C(CH₃)₃], 35.49 [C_{quat}, C(CH₃)₃], 67.18 (–, OCH₂), 77.51 (C_{quat}, C-2), 93.27 (+, C-4), 126.52, 126.73, 127.88 (+, Ph), 140.52 (C_{quat}, Ph), 184.45, 185.10 (C_{quat}, C-5, -3). – MS (70 eV), *m/z* (%): 283 (75) [M⁺], 268 (100) [M⁺ – CH₃], 254 (57) [M⁺ – C₂H₅], 226 (12) [M⁺ – C₄H₉], 198 (8), 128 (9), 57 (7). – C₁₉H₂₅NO (283.4): calcd. C 80.52, H 8.89, N 4.94; found C 80.31, H 9.16, N 4.93.

2,2-Dicyclopropyl-3-ethoxy-5-phenyl-2H-pyrrole (19a) and 2,2-Dicyclopropyl-4-ethoxy-6-phenyl-3(2H)-pyridinone (20a): A solution of 380 mg (0.83 mmol) of 16a in 18 ml of tetrahydrofuran was stirred at 50-55°C for 20 h. The solvent was removed under reduced pressure. Flash chromatography (20 g of flash silica gel, 15 \times 1.5 cm, pentane/diethyl ether, 5:1) yielded fraction I: 100 mg (45%) of **19a** ($R_f = 0.29$), white solid. – IR (KBr): $\tilde{v} = 2963 \text{ cm}^{-1}$, 1610, 1524, 1446, 1319, 1024, 759, 439, 407. - ¹H NMR (250 MHz, $CDCl_3$): $\delta = 0.15 - 0.36$ (m, 4H, cPr-CH₂), 0.44 (m_c, 2H, cPr-CH₂), 0.69 (m_c, 2H, cPr-CH₂), 1.25 (m_c, 2H, cPr-CH), 1.40 (t, ${}^{3}J = 7.1$ Hz, 3H, OCH₂CH₃), 4.00 (q, ${}^{3}J = 7.1$ Hz, 2H, OCH₂), 5.61 (s, 1 H, 4-H), 7.30-7.49 (m, 3 H, Ph), 7.77-7.90 (m, 2 H, Ph). $- {}^{13}C$ NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = -0.81$, 1.29 (-, cPr-CH2), 14.20, 16.34 (+, OCH2CH3, cPr-CH), 67.19 (-, OCH2), 76.24 (C_{quat}, C-2), 93.43 (+, C-4), 127.11, 128.22, 129.83 (+, Ph), 135.15 (C_{quat}, Ph), 172.27, 186.87 (C_{quat}, C-5, -3). – MS (70 eV), m/z (%): 267 (17) [M⁺], 238 (100) [M⁺ - C₂H₅], 222 (30) [M⁺ - OC_2H_5], 210 (28), 164 (19), 102 (22), 77 (15), 41 (10). - $C_{18}H_{21}NO$: calcd. 267.1623 (correct HRMS). – II: 52 mg (21%) of **20a** ($R_f = 0.22$), yellow crystals, m.p. 112°C. – IR (KBr): $\tilde{v} = 1680$ cm⁻¹ (C=O), 1636, 1570, 1229, 859, 697, 638. - ¹H NMR (250 MHz, CDCl₃): $\delta = -0.01$ (m_c, 2 H, *c*Pr-CH₂), 0.26 (m_c, 2 H, *c*Pr-CH₂), 0.46 (m_c, 2H, cPr-CH₂), 0.88 (m_c, 2H, cPr-CH₂), 1.36-1.59 (m, 5H, cPr-CH, OCH₂CH₃), 4.03 (q, ${}^{3}J = 7.1$ Hz, 2H, OCH₂), 6.45 (s, 1H, 5-H), 7.33-7.56 (m, 3H, Ph), 7.62-7.85 (m, 2H, Ph), -¹³C NMR (62.9 MHz, CDCl₃): $\delta = -0.20, -0.10$ (*c*Pr-CH₂), 14.02 (cPr-CH), 19.71 (OCH₂CH₃), 64.41 (OCH₂), 69.89 (C-2), 102.57 (C-5), 126.34, 128.46, 130.06, 139.05 (Ph), 154.32 (C-4), 160.03 (C-6), 203.53 (C-3). – MS (70 eV), m/z (%): 295 (17) [M⁺], 266 (75) $[M^+ - C_2H_5]$, 210 (18), 91 (100), 85 (52), 77 (18), 55 (12), 41 (13). - C₁₉H₂₁NO₂ (295.4): calcd. C 77.26, H 7.17, N 4.74; found C 77.33, H 7.33, N 4.85.

2,2-Dicyclopropyl-4-ethoxy-6-propyl-3(2H)-pyridinone (20b) and 2,2-Dicyclopropyl-3-ethoxy-5-propyl-2H-pyrrole (19b): A solution of 400 mg (0.94 mmol) of 16b in 15 ml of tetrahydrofuran was stirred at 50-55°C for 20 h. The solvent was removed under reduced pressure. Flash chromatography (20 g of flash silica gel, 15 \times 1.5 cm, pentane/diethyl ether, 10:1) yielded fraction I: 18 mg unidentified product ($R_f = 0.34$), yellow oil. – II: 54 mg (22%) of **20b** ($R_{\rm f} = 0.13$), yellow oil. - IR (film): $\tilde{v} = 3086 \text{ cm}^{-1}$, 3006, 2961, 2933, 1733 (C=O), 1652, 1587, 1376, 1154, 1085, 1023, 837. $- {}^{1}$ H NMR (250 MHz, CDCl₃): $\delta = -1.11$ (m_c, 2H, *c*Pr-CH₂), 0.19 (m_c, 2H, cPr-CH₂), 0.36 (m_c, 2H, cPr-CH₂), 0.73 (m_c, 2H, cPr-CH₂), 0.92 (t, ${}^{3}J = 7.0$ Hz, 3H, CH₂CH₂CH₃), 1.31–1.52 (m, 5H, OCH₂CH₃, cPr-CH), 1.55 (tq, ${}^{3}J = 7.0$, ${}^{3}J = 7.0$ Hz, 2H, $CH_2CH_2CH_3$), 2.31 (t, ${}^{3}J = 7.0$ Hz, 2H, $CH_2CH_2CH_3$), 4.03 (q, ${}^{3}J = 7.1$ Hz, 2H, OCH₂), 5.72 (s, 1H, 5-H). $- {}^{13}C$ NMR (62.9) MHz, CDCl₃, plus DEPT): $\delta = -0.44$, -0.10 (-, cPr-CH₂), 13.67, 13.97, 19.97 (+, CH2CH2CH3, OCH2CH3, cPr-CH), 20.14 (-, CH2CH2CH3), 42.28 (-, CH2CH2CH3), 64.14 (-, OCH2), 69.26 $(C_{quat}, C-2), 104.91 (+, C-5), 153.54, 164.11 (C_{quat}, C-6, -4), 203.91$

Chem. Ber. 1994, 127, 911-920

 $(C_{\text{quat}}, C-3)$. - MS (70 eV), m/z (%): 261 (18) [M⁺], 232 (62) [M⁺] C_2H_5], 218 (42), 190 (100), 162 (38), 148 (20), 77 (25), 55 (30), 41 (86). $-C_{16}H_{23}NO_2$: calcd. 261.1728 (correct HRMS). - III: 3 mg unidentified product ($R_f = 0.03$), blue oil. – IV (elution with diethyl ether): 138 mg (63%) of **19b**, colorless oil. – IR (film): $\tilde{v} =$ 2954 cm⁻¹, 1620, 1037, 909, 733, 699, 654. - ¹H NMR (250 MHz, CDCl₃): $\delta = 0.03 - 0.20$ (m, 4H, cPr-CH₂), 0.33 (m_c, 2H, cPr-CH₂), 0.53 (m_c, 2H, cPr-CH₂), 0.87 (t, ${}^{3}J = 7.0$ Hz, 3H, $CH_2CH_2CH_3$), 1.08 (m_c, 2H, cPr-CH), 1.33 (t, ³J = 7.0 Hz, 3H, OCH_2CH_3), 1.53 (tq, ${}^{3}J = 7.0$, ${}^{3}J = 7.0$ Hz, 2H, $CH_2CH_2CH_3$), 2.31 (t, ${}^{3}J = 7.0$ Hz, 2H, CH₂CH₂CH₃), 3.86 (q, ${}^{3}J = 7.1$ Hz, 2H, OCH₂), 5.02 (s, 1H, 4-H). - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = -0.97$, 1.16 (-, *c*Pr-CH₂), 13.79, 14.18, 15.83 (+, CH2CH2CH3, OCH2CH3, cPr-CH), 20.85 (-, CH2CH2CH3), 35.85 (-, CH₂CH₂CH₃), 67.04 (-, OCH₂), 75.19 (C_{quat}, C-2), 95.17 (+, C-4), 177.62, 186.19 (C_{quat}, C-5, -3). - MS (70 eV), m/z (%): 233 (18) $[M^+]$, 205 (100) $[M^+ - C_2H_4]$, 164 (68), 148 (8), 91 (5), 77 (5), 55 (4), 44 (3). - C₁₅H₂₃NO: calcd. 233.1779 (correct HRMS).

2,2,5-Tricyclopropyl-3-ethoxy-2H-pyrrole (19c): A solution of 131 mg (0.31 mmol) of 16c in 12 ml of tetrahydrofuran was stirred at 50-55°C for 20 h. The solvent was evaporated under reduced pressure. Impurities were removed by chromatography (10 g of silica gel, petroleum ether/diethyl ether, 10:1), elution with diethyl ether (plus 5% triethylamine) yielded 58 mg (81%) of 19c, brown oil. – IR (film): $\tilde{v} = 2985 \text{ cm}^{-1}$, 1620, 1540, 1457, 1031, 907. – ¹H NMR (250 MHz, CDCl₃): $\delta = 0.02 - 0.30$ (m, 3H, cPr-CH₂), 0.41 (m_c, 2H, cPr-CH₂), 0.62 (m_c, 2H, cPr-CH₂), 0.80–1.08 (m, 8H, cPr-CH₂, cPr-CH), 1.39 (t, ³J = 7.1 Hz, 3H, OCH₂CH₃), 3.95 $(q, {}^{3}J = 7.1 \text{ Hz}, 2\text{ H}, \text{ OCH}_{2}), 4.32 (s, 1\text{ H}, 4\text{-H}). - {}^{13}\text{C} \text{ NMR} (62.9)$ MHz, CDCl₃, plus DEPT): $\delta = -0.68$, 1.62, 8.62 (-, cPr-CH₂), 14.08, 14.30, 15.91 (+, OCH₂CH₃, cPr-CH), 67.78 (-, OCH₂), 75.23 (Cquat, C-2), 91.88 (+, C-4), 181.04, 186.96 (Cquat, C-5, -3). - MS (70 eV), m/z (%): 231 (32) [M⁺], 202 (100) [M⁺ - C₂H₅], 186 (42) $[M^+ - OC_2H_5]$, 164 (40), 146 (5), 77 (11), 41 (34). C15H21NO: calcd. 231.1623 (correct HRMS).

5-tert-Butyl-2,2-dicyclopropyl-3-ethoxy-2H-pyrrole (19d): A solution of 477 mg (1.09 mmol) of 16d in 15 ml of tetrahydrofuran was stirred at 50-55°C for 16 h. The solvent was evaporated under reduced pressure. Impurities were removed by chromatography (10 g of silica gel, petroleum ether/diethyl ether, 10:1), elution with diethyl ether (plus 5% triethylamine) yielded 247 mg (92%) of 19d, colorless oil. – IR (film): $\tilde{v} = 3007 \text{ cm}^{-1}$, 1637, 1614, 1447, 1092, 1026, 766, 693. – ¹H NMR (250 MHz, CDCl₃): $\delta = -0.05 - 0.20$ (m, 4H, cPr-CH₂), 0.30 (m_c, 2H, cPr-CH₂), 0.56 (m_c, 2H, cPr-CH₂), 1.08–1.20 [s and m, 11 H, C(CH₃)₃, cPr-CH], 1.31 (t, ${}^{3}J$ = 7.1 Hz, 3 H, OCH₂CH₃), 3.83 (q, ${}^{3}J = 7.1$ Hz, 2 H, OCH₂), 5.09 (s, 1H, 4-H). – ^{13}C NMR (62.9 MHz, CDCl₃, plus DEPT): δ = -1.04, 1.10 (-, cPr-CH₂), 14.22, 15.91 (+, OCH₂CH₃, cPr-CH), 28.28 [+, C(CH₃)₃], 35.33 [C_{quat}, C(CH₃)₃], 66.78 (-, OCH₂), 74.23 $(C_{quat}, C-2)$, 93.00 (+, C-4), 183.75, 185.46 (C_{quat} , C-5, -3). – MS (70 eV), m/z (%): 247 (17) [M⁺], 232 (20) [M⁺ - CH₃], 218 (23), 190 (18) $[M^+ - C_4H_9]$, 95 (18), 81 (9), 57 (100) $[C(CH_3)_3^+]$, 53 (22), 41 (74). - C₁₆H₂₅NO: calcd. 247.1936 (correct HRMS).

X-ray Structure Analysis of 5-tert-Butyl-2-cyclopropyl-3-ethoxy-2-phenyl-2H-pyrrole (18d): Formula C₁₉H₂₅NO, molecular mass 283.40, triclinic, space group P1, Z = 2, a = 870.3(2), b = 987.2(2), c = 1020.5(2) pm, a = 73.82(3), β = 84.51(3), γ = 78.15(3)°, V = 0.8234(3) nm³, $\rho_{calcd.}$ = 1.143 Mg m⁻³, μ (Mo-K_a) = 0.070 nm⁻¹, crystal dimensions 0.60 × 0.60 × 0.40 mm, 2149 unique reflections were measured with a Stoe-Siemens four-circle diffractometer with graphit-monochromated Mo-K_a radiation (λ = 71.073 pm) at 150(2) K, 2 Θ -range: 3.53-22.50°. The structure was solved by direct methods (SHELXL-92^[24]) and refined on F^2 by full-matrix least-squares techniques (SHELXL-92^[25]). All nonhydrogen atoms were refined anisotropically, the hydrogen atoms were included in calculated positions and refined by using a riding model. R values: $R_1 = + \Sigma (F_o - F_c) + \Sigma F_o, \ wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{0.5}. \ R_1 = - \Sigma (F_o - F_c) + \Sigma (F_o^2 - F_c^2)^2 / \Sigma (F_o^2)^2 + \Sigma (F_o^2 - F_c^2)^2 / \Sigma (F_o^2 - F_c^2) / \Sigma (F_$ 0.0381 [for $F > 4\sigma(F)$], $wR_2 = 0.1037$ (for all data) with 191 parameters and 0 restraints, $w = 1/[\sigma^2(F_0^2) + (0.08P)^2 + 0.47P, P =$ $(F_o^2 + 2F_c^2)/3$. Largest difference peak 0.164 e⁻ nm⁻³ · 10³.

- ^[1] Cf. W. D. Wulff in Comprehensive Organic Synthesis (Eds.: B. M. Trost, I. Fleming), Pergamon, Oxford, 1991, vol. 5, p.
- ^[2] ^[2a] K. H. Dötz, Angew. Chem. 1975, 87, 672-673; Angew. Chem. Int. Ed. Engl. 1975, 14, 644. ^[2b] K. H. Dötz, R. Dietz, Chem. Int. Ed. Engl. 1975, 14, 644. ^[2b] K. H. Dötz, R. Dietz, Chem. Rev. 1976, 109 A. von Imhof, H. Lorenz, G. Huttner, *Chem. Ber.* **1976**, *109*, 2033–2038. – ^[2e] P.-C. Tang, W. D. Wulff, *J. Am. Chem. Soc.* **1984**, *106*, 1132–1135. – ^[2d] M. E. Bos, W. D. Wulff, R. A. Miller, S. Chamberlin, T. A. Brandvold, J. Am. Chem. Soc. **1991**, 113, 9293–9319.
- ^[3] ^[3a] M. Duetsch, R. Lackmann, F. Stein, A. de Meijere, *Synlett* 1991, 324–326. ^[3b] R. Aumann, H. Heinen, M. Dartmann, B. Krebs, *Chem. Ber.* 1991, *124*, 2343–2347.
- [4] F. Stein, M. Duetsch, M. Noltemeyer, A. de Meijere, Synlett 1993, 486-488.
- [5] M. Duetsch, S. Vidoni, F. Stein, F. Funke, M. Noltemeyer, A. de Meijere, J. Chem. Soc., Chem. Commun., submitted for publication.
- [6] F. Stein, M. Duetsch, R. Lackmann, M. Noltemeyer, A. de Meijere, Angew. Chem. 1991, 103, 1669-1671; Angew. Chem. Int. Ed. Engl. 1991, 30, 1658.
- [7] M. Duetsch, F. Stein, A. de Meijere, Tetrahedron Lett. 1993,
- 34, 5875-5878.
 ^[8] ^[8a] R. Aumann, P. Hinterding, *Chem. Ber.* 1992, 125, 2765-2772. ^[8b] M. Duetsch, F. Stein, F. Funke, E. Pohl, R.
- ^[9] ^[9a] R. Aumann, H. Heinen, C. Krüger, P. Betz, Chem. Ber. 1993, 126, 2535-2541.
 ^[9] ^[9a] R. Aumann, H. Heinen, C. Krüger, P. Betz, Chem. Ber. 1990, 123, 599-604. ^[9b] R. Aumann, H. Heinen, R. Goddard, C. Krüger, Chem. Ber. 1991, 124, 2587-2593. ^[9c] R. Aumann, H. Heinen, L. Orgemant, Chem. 1000, 380 Cl = C6 ^[9d] R. Kruger, Chem. Ber. 1991, 124, 2587-2593. – [55] R. Aumann,
 H. Heinen, J. Organomet. Chem. 1990, 389, C1-C6. – [94] R.
 Aumann, H. Heinen, J. Organomet. Chem. 1990, 391, C7-C11.
 [10] V. Dragisich, C. K. Murray, B. P. Warner, W. D. Wulff, D. C.
 Yang, J. Am. Chem. Soc. 1990, 112, 1251-1253.
 [11] [11a] E. O. Fischer, F. R. Kreissl, J. Organomet. Chem. 1972, 35,

C47-C51. - ^[11b] E. O. Fischer, H. J. Kalder, *J. Organomet. Chem.* **1977**, *131*, 57-64. ^[12] ^[12a] M. Duetsch, F. Stein, R. Lackmann, E. Pohl, R. Herbst-

- Irmer, A. de Meijere, *Chem. Ber.* **1992**, *125*, 2051–2065. $[^{12b]}$ F. Stein, M. Duetsch, E. Pohl, R. Herbst-Irmer, A. de Mei-
- jere, Organometallics **1993**, *12*, 2556–2564. ^[13] ^[13a] R. Aumann, Chem. Ber. **1992**, *125*, 2773–2778. ^[13b] R. Aumann, P. Hinterding, Chem. Ber. 1993, 126, 421-427.
- [14] The reaction of (acyloxy)- and (alkoxy)carbene complexes with N-substituted imines leading to iminocarbene complexes has been reported: C. K. Murray, B. P. Warner, V. Dragisich, W. D. Wulff, Organometallics 1990, 9, 3142-3151.
- ^[15] F. Camps, A. Llebaria, J. M. Moreto, S. Ricart, J. M. Viñas, J. Organomet. Chem. 1991, 401, C17-C19.
- ^[16] Cf. R. Pipoh, R. van Eldik, G. Henkel, Organometallics 1993, 12, 2236-2242.
- ^[17] C. Krüger, E. G. Rochow, U. Wannagat, Chem. Ber. 1963, 96, 2132-2137.
- ^[18] J. B. Cloke, J. Am. Chem. Soc. 1929, 51, 1174-1187
- [19] Cf. A. de Meijere, Angew. Chem. 1979, 91, 867-950; Angew. Chem. Int. Ed. Engl. 1979, 18, 867, and references cited therein.
- ^[20] Further details of this crystal structure determination are avail-able on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany, by quoting the depository number CSD-58117, the names of the authors, and
- depository number CSD-58117, the names of the authors, and the publication.
 ^[21] ^[21a] C. A. Merlic, D. Xu, J. Am. Chem. Soc. 1991, 113, 7418-7421. ^[21b] C. A. Merlic, E. E. Burns, D. Xu, S. Y. Chen, J. Am. Chem. Soc. 1992, 114, 8722-8724. ^[21c] C. A. Merlic, D. Xu, B. G. Gladstone, J. Org. Chem. 1993, 58, 538-545. ^[21d] C. A. Merlic, E. E. Burns, Tetrahedron Lett. 1993, 34, 5401-5404. ^[21e] R. Aumann, Chem. Ber. 1993, 126, 1867-1872.
 ^[22] ^[22a] R. A. Jones, Pyrroles, The Synthesis and the Physical and Chemical Aspects of the Pyrrole Ring, part 1, vol. 48, Wiley, London, 1990. ^[22b] C. Vogel, R. Schnippenkötter, P. G. Jones, P. Bubenitschenck, Angew. Chem. 1993, 105, 1116-1117; Angew. Chem. Int. Ed. Engl. 1993, 32, 1051.
- ^[23] The line broadening apparently resulted from paramagnetic im-purities formed by partial oxidation of the chromium com-
- plexes. ^[24] G. M. Sheldrick, Acta Crystallogr., Sect. A, **1990**, 46, 467–473. ^[25] G. M. Sheldrick, SHELXL-92, Program for Crystal Structure Refinement, University of Göttingen, 1992.

[378/93]